Measures of Association

- A single number that summarizes the strength of the relationship between two variables.
 - It suggests the ability of one variable (the independent variable) to predict another (the dependent variable). It also, sometimes, shows the direction of the relationship (either positive or negative).

Measures of Association

"All good measures of association use a proportionate reduction in error (PRE) approach".

What is a PRE measure?

PRE measures compare:

(1) the amount of error that is made when trying to predict a variable and there is no information to help

to:

(2) the amount of error that is made when trying to predict a variable and there is some information to help, i.e., an independent variable.

For Example: Take your best guess?

If you know nothing else about a person except that he or she lives in the United States and I asked you to guess his or her race/ethnicity, what would you guess?

The most common race/ethnicity for U.S. residents.

The mode!

(i.e., we have additional information to help. That is the independent variable: city of residence),

would you change your guess?

Summary

PRE measures are derived by comparing:

- the number of errors made when predicting the dependent variable (DV) while ignoring all independent variables (IV)
 to:
- 10.
- the number of errors made when predicting the DV while using information about an IV.

Proportional Reduction of Error (PRE)

$$PRE = \frac{E1 - E2}{E1}$$

E1 = errors of prediction made when the independent variable is ignored

E2 = errors of prediction made when the IV is used to make the predictions

Proportional Reduction of Error (PRE)

- If the DV is related to the IV, then the IV will allow us to make a better prediction (fewer errors) than the prediction we would make without considering the IV.
- The better the ability of the IV to help us predict the DV, the "stronger" the relationship between the DV and the IV.

Measure of Association: Lambda $^{\mathcal{N}}$

- Provides us with an indication of the strength of an association between the independent and dependent variables.
- Suitable for use with nominal variables
- Ranges from 0.0 to 1.0
- A lower value represents a weaker association, while a higher value is indicative of a stronger association between the DV & IV

- A measure whose value may vary depending on which variable is considered the independent variable and which the dependent variable.

Measure of Association: Gamma $^{\gamma}$

• Gamma provides us with an indication of the strength and direction of the association between the variables (ranges from 0.0 to ± 1.0).

• Appropriate for ordinal variables or with dichotomous nominal variables (dichotomous variables have only two values such as female/male).

• Gamma $\mathcal Y$ is a symmetrical measure of association.

(A measure whose value will be the same when either variable is considered the independent variable or the dependent variable).

The size of the Gamma is generally interpreted as follows:

- .00 to .19 .20 to .39 .40 to .59 .60 to 1.00
 - "little to no relationship" "weak relationship" "moderate relationship" "strong relationship"

